Spectral theorem for multipliers on $L^2_\omega(\mathbb{R})$

Violeta Petkova

Abstract. We study the spectrum $\sigma(M)$ of the multipliers M which commute with the translations on weighted spaces $L^2_\omega(\mathbb{R})$. For operators M in the algebra generated by the convolutions with $\phi \in C_c(\mathbb{R})$ we show that $\mu(\Omega) = \sigma(M)$, where the set Ω is determined by the spectrum of the shift S and μ is the symbol of M. For the general multipliers M we establish that $\mu(\Omega)$ is included in $\sigma(M)$. A generalization of these results is given for the weighted spaces $L^2_\omega(\mathbb{R}^k)$ where the weight ω has a special form.

Mathematics Subject Classification (2000). 47A10.

Keywords. spectrum, multipliers, symbol of a multiplier, translations.

1. Introduction

In this paper we examine the spectrum of multipliers M on a weighted space $L^2_\omega(\mathbb{R})$. Our approach is based heavily on the existence of symbols for this class of operators and we show that the spectrum $\sigma(M)$ can be expressed by the symbol μ of M applied to a set Ω defined by the spectrum of the shift operator S. To announce our results we need some definitions.

A weight ω on \mathbb{R} is a positive measurable function on \mathbb{R} such that

$$\sup_{x \in \mathbb{R}} \frac{\omega(x+y)}{\omega(x)} < +\infty, \forall y \in \mathbb{R}.$$

Denote by $L^2_\omega(\mathbb{R})$ the space of measurable functions on \mathbb{R} such that

$$\int_{\mathbb{R}} |f(x)|^2 \omega(x)^2 dx < +\infty.$$

Let $C_c(\mathbb{R})$ be the set of continuous functions on \mathbb{R} with compact support. For a compact K of \mathbb{R} denote by $C_K(\mathbb{R})$ the subset of functions of $C_c(\mathbb{R})$ with support in K. The space $L^2_\omega(\mathbb{R})$ equipped by the norm

$$\|f\| = \left(\int_{\mathbb{R}} |f(x)|^2 \omega(x)^2 dx \right)^{\frac{1}{2}}.$$
is a Banach space and \(C_c(\mathbb{R}) \) is dense in \(L^2_\omega(\mathbb{R}) \). We denote by \(\hat{f} \) or by \(\mathcal{F}(f) \) the usual Fourier transform of \(f \in L^2(\mathbb{R}) \). Denote by \(S_x \) the operator of translation by \(x \) defined on \(L^2_\omega(\mathbb{R}) \) by
\[
(S_x f)(t) = f(t - x), \quad \forall t \in \mathbb{R}.
\]
Let \(S \) (resp. \(S^{-1} \)) be the translation by 1 (resp. -1) on the space \(L^2_\omega(\mathbb{R}) \). Define the set
\[
\Omega = \{ z \in \mathbb{C}, -\ln \rho(S^{-1}) \leq \Im z \leq \ln \rho(S) \},
\]
where \(\rho(A) \) is the spectral radius of \(A \). For \(\phi \in C_c(\mathbb{R}) \) denote by \(M_\phi \) the operator of convolution by \(\phi \) on \(L^2_\omega(\mathbb{R}) \). Let \(\mathcal{A} \) (resp. \(\mathcal{B} \)) be the closed algebra generated by operators \(M_\phi \), for \(\phi \in C_c(\mathbb{R}) \) (resp. \(S_x \), \(x \in \mathbb{R} \)) with respect to the topology of the operator norm. Denote by \(\hat{\mathcal{A}} \) the set of characters of a commutative algebra \(\mathcal{A} \).

Definition 1.1. A bounded operator \(M \) on \(L^2_\omega(\mathbb{R}) \) is called a multiplier if
\[
MS_x = S_x M, \quad \forall x \in \mathbb{R}.
\]
We will denote by \(\mathcal{M} \) the algebra of the multipliers on \(L^2_\omega(\mathbb{R}) \). Notice that \(\mathcal{M} \) is a commutative Banach algebra with unit. The commutativity of \(\mathcal{M} \) follows from the fact that for every \(M \in \mathcal{M} \) there exists a distribution \(\mu \) such that \(Mf = \mu * f \) for \(f \in C^\infty_c(\mathbb{R}) \) (see [6]).

Theorem 1.2. For \(\phi \in C_c(\mathbb{R}) \), we have
\[
\sigma(M_\phi) = \overline{\hat{\phi}(\Omega)}.
\]
On the other hand, for every \(M \in \mathcal{A} \) we obtain

Theorem 1.3. Let \(M \in \mathcal{A} \) and let \(\nu \) be the symbol of \(M \). Then \(\nu \) is a continuous function on \(\Omega \) and we have
\[
\sigma(M_\phi) = \overline{\nu(\Omega)}.
\]

For general multiplier \(M \) with symbol \(\mu \) denote by \(\mu(\Omega) \) the essential range of \(\mu \). We have a weaker result leading to the inclusion of \(\mu(\Omega) \) in the spectrum of \(M \).

Theorem 1.4. Let \(M \) be a multiplier on \(L^2_\omega(\mathbb{R}) \) and let \(\mu \) be the symbol of \(M \). Then we have
\[
\overline{\mu(\Omega)} \subset \sigma(M).
\]
Spectral theorem for multipliers

We may characterize the spectrum of M by the set $\mu(\Omega)$. For example, Theorem 1.4 yields the well known inclusion $e^{itS} \subset \sigma(e^{itS})$.

On the other hand for the operators in \mathcal{M} it seems difficult to obtain an analog of (1.2) by using the techniques developed for C_0-semi-groups and special Banach algebra (see [4], [3], [5], [1]).

2. Preliminaries

First, we explain the link between the spectrum of S and the set where the symbol of a multiplier is defined. For $a \in \mathbb{R}$, denote by g_a the function $g_a(x) = g(x)e^{ax}$.

In [6], we have established the following theorem.

Theorem 2.1. For every $M \in \mathcal{M}$, and for every $a \in I = [-\ln \rho(S^{-1}), \ln \rho(S)]$, we have:

1) $(Mf)_a \in L^2(\mathbb{R})$, $\forall f \in C_c(\mathbb{R})$.
2) There exists $\mu(a) \in L^\infty(\mathbb{R})$ such that
 \[
 \int_{\mathbb{R}} (Mf)(x)e^{ax}e^{-itx}dx = \mu(a)(t)\int_{\mathbb{R}} f(x)e^{ax}e^{-itx}dx, \ a.e., \ \forall f \in C_c(\mathbb{R})
 \]
 i.e.
 \[
 \hat{(Mf)}_a = \hat{\mu(a)}(\hat{f})_a.
 \]
3) If $\mathcal{I} \neq \emptyset$ then the function $\mu(z) = \mu(\Im z)(\Re z)$ is holomorphic on $\hat{\Omega}$.

Definition 2.2. Given $M \in \mathcal{M}$, if $\hat{\Omega} \neq \emptyset$, we call symbol of M the function μ defined by

$\mu(z) = \mu(\Im z)(\Re z)$, $\forall z \in \hat{\Omega}$.

Moreover, if $a = -\ln \rho(S^{-1})$ or $a = \ln \rho(S)$, the symbol μ is defined for $z = x + ia$ by the same formula for almost all $x \in \mathbb{R}$.

We will say that $a \in \mathbb{R}$ verifies the property (P) if for every $M \in \mathcal{M}$ we have:

1) $(Mf)_a \in L^2(\mathbb{R})$, $\forall f \in C_c(\mathbb{R})$
2) There exists $\mu(a) \in L^\infty(\mathbb{R})$ such that
 \[
 \int_{\mathbb{R}} (Mf)(x)e^{ax}e^{-itx}dx = \mu(a)(t)\int_{\mathbb{R}} f(x)e^{ax}e^{-itx}dx, \ a.e.
 \]

Theorem 2.1 may be extended. Indeed we have the following lemma, which will be useful in our analysis.

Lemma 2.3. Let $M \in \mathcal{M}$, $a \in [-\ln \rho(S^{-1}), \ln \rho(S)]$ and let $f \in L^2(\mathbb{R})$ be such that $(f)_a \in L^2(\mathbb{R})$. Then we have:

1) $(Mf)_a \in L^2(\mathbb{R})$
2) $(\hat{Mf})_a = \mu(a)(\hat{f})_a$.

Proof. To establish Lemma 2.3 we use the arguments exploited in the proof of Theorem 2.1 (see [6]). Let $M \in \mathcal{M}$. Then there exists a sequence $(\phi_n)_{n \in \mathbb{N}} \subset C_c(\mathbb{R})$ such that M is the limit of $(M_{\phi_n})_{n \in \mathbb{N}}$ with respect to the strong operator topology and we have $\|M_{\phi_n}\| \leq C\|M\|$, where C is a constant independent of n (see [6], [7]). Let $a \in [-\ln \rho(S^{-1}), \ln \rho(S)]$. We will apply the following not trivial property (see [6])

$$\|\hat{\psi}(a)(x)\| \leq \|M\|, \ \forall \psi \in C_c(\mathbb{R}), \ \forall x \in \mathbb{R}. \quad (2.1)$$

Observe that

$$\|\hat{\psi}(a)(x)\| \leq \|M\|, \ \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}.$$

and replace $(\hat{\phi_n})_{n \in \mathbb{N}}$ by a suitable subsequence also denoted by $(\hat{\phi_n})_{n \in \mathbb{N}}$ converging in the weak topology $\sigma(L^\infty(\mathbb{R}), L^1(\mathbb{R}))$ to a function $\mu(a) \in L^\infty(\mathbb{R})$ such that $\|\mu(a)\| \leq C\|M\|$. We have

$$\lim_{n \to +\infty} \int_{\mathbb{R}} (\hat{\phi_n}(x) - \mu(a)(x)) g(x) \, dx = 0, \ \forall g \in L^1(\mathbb{R}).$$

Fix $f \in L^2(\mathbb{R})$ so that $(f)_a \in L^2(\mathbb{R})$. Then we get

$$\lim_{n \to +\infty} \int_{\mathbb{R}} (\hat{\phi_n}(x)(f_a)(x) - \mu(a)(x)(f)_a(x)) g(x) \, dx = 0$$

for all $g \in L^2(\mathbb{R})$. We conclude that $(\hat{\phi_n}(f)_a)_{n \in \mathbb{N}}$ converges weakly in $L^2(\mathbb{R})$ to $\mu(a)(f)_a$.

On the other hand, we have

$$(M_{\hat{\phi_n}f})_a(x) = (\hat{\phi_n}(x)(f)_a(x), \ a.e.$$

and

$$\|(M_{\hat{\phi_n}f})_a\|_{L^2} = (2\pi)^{-1/2} \|(M_{\hat{\phi_n}f})_a\|_{L^2} \leq (2\pi)^{-1/2}\|\hat{\phi_n}\|_{L^\infty} \|f\|_{L^2}$$

$$\leq (2\pi)^{-1/2}C\|M\|\|f\|_{L^2}, \ \forall n \in \mathbb{N}.$$

We replace $((M_{\hat{\phi_n}f})_a)_{n \in \mathbb{N}}$ by a suitable subsequence and we suppose that $((M_{\hat{\phi_n}f})_a)_{n \in \mathbb{N}}$ converges weakly in $L^2(\mathbb{R})$ to a function $h_a \in L^2(\mathbb{R})$. For $g \in C_c(\mathbb{R})$, we obtain

$$\int_{\mathbb{R}} |(M_{\hat{\phi_n}f})_a(x) - (Mf)_a(x)| \, |g(x)| \, dx$$

$$\leq C_{a,g}\|M_{\hat{\phi_n}f} - Mf\|, \ \forall n \in \mathbb{N},$$

where $C_{a,g}$ is a constant depending only on g and a. Since $(M_{\phi_n}f)_{n \in \mathbb{N}}$ converges to Mf in $L^2(\mathbb{R})$, we get

$$\lim_{n \to +\infty} \int_{\mathbb{R}} (M_{\phi_n}f)_a(x)g(x) \, dx = \int_{\mathbb{R}} (Mf)_a(x)g(x) \, dx, \ \forall g \in C_c(\mathbb{R}).$$
Thus we conclude that \((Mf)_{\alpha} = h_{\alpha}\) and \((Mf)_{\alpha} \in L^2(\mathbb{R})\). Now taking into account that for \(g \in L^2(\mathbb{R})\) we have

\[
\lim_{n \to +\infty} \langle (M_{\phi_n}f)_{\alpha}, \hat{g} \rangle_{L^2} = \lim_{n \to +\infty} \langle (\phi_n)_{\alpha} \hat{(f)}_{\alpha}, \hat{g} \rangle_{L^2} = \langle (\mu_{\alpha}(f))_{\alpha}, \hat{g} \rangle_{L^2},
\]

and also

\[
\lim_{n \to +\infty} \langle (M_{\phi_n}f)_{\alpha}, \hat{g} \rangle_{L^2} = \langle (Mf)_{\alpha}, \hat{g} \rangle_{L^2},
\]

we obtain

\[
(Mf)_{\alpha} = \mu_{\alpha}(f)_{\alpha}.
\]

Consequently, for every \(f \in L^2(\mathbb{R})\) such that \((f)_{\alpha} \in L^2(\mathbb{R})\) we have

\[
(Mf)_{\alpha}(x) = \mu_{\alpha}(x)(f)_{\alpha}(x) \text{ a.e.}
\]

Denote by \(\sigma(A)\) the spectrum of the operator \(A\). First we have the following

Proposition 2.4. We have

\[
\sigma(S) = \left\{ z \in \mathbb{C}, \quad \frac{1}{\rho(S^{-1})} \leq |z| \leq \rho(S) \right\}
\]

and the real \(a\) satisfies the property (P) if and only if \(a \in [-\ln \rho(S^{-1}), \ln \rho(S)]\).

Theorem 2.1 implies that if \(a \in [-\ln \rho(S^{-1}), \ln \rho(S)]\), then \(a\) satisfies the property (P).

Lemma 2.5. If \(a \in \mathbb{R}\) verifies the property (P), then \(e^{a+ib} \in \sigma(S)\), for all \(b \in \mathbb{R}\).

Proof. Let \(\alpha \in \mathbb{C}\) be such that \(e^{\alpha} \notin \sigma(S)\). Then it is clear that \(T = (S - e^{\alpha}I)^{-1}\) is a multiplier. Let \(a \in \mathbb{R}\) verify the property (P). Then there exists \(\nu_{\alpha} \in L^\infty(\mathbb{R})\) such that

\[
(Tf)_{\alpha} = \nu_{\alpha}(f)_{\alpha}, \quad \forall f \in C_c(\mathbb{R}), \text{ a.e.}
\]

Replacing \(f\) by \((S - e^{\alpha}I)g\), for \(g \in C_c(\mathbb{R})\) we get

\[
(g)_{\alpha}(x) = \nu_{\alpha}(x)[(S - e^{\alpha}I)g]_{\alpha}(x), \quad \forall g \in C_c(\mathbb{R}), \text{ a.e.}
\]

and

\[
(g)_{\alpha}(x) = \nu_{\alpha}(x)(g)_{\alpha}(x)[e^{a-ix} - e^{\alpha}], \quad \forall g \in C_c(\mathbb{R}), \text{ a.e.}
\]

Choosing a suitable \(g \in C_c(\mathbb{R})\), we have

\[
\nu_{\alpha}(x)(e^{a-ix} - e^{\alpha}) = 1, \quad \text{a.e.}
\]

Since \(\nu_{\alpha} \in L^\infty(\mathbb{R})\), we obtain that \(\Re \alpha \neq a\) and we conclude that

\[
e^{a+ib} \in \sigma(S), \quad \forall b \in \mathbb{R}.
\]

Taking into account Theorem 2.1 and Lemma 2.5, Proposition 2.4 follows directly.
3. Spectrum of $M \in \mathcal{M}$

In this section we investigate the spectrum of a general multiplier on $L^2_\omega(\mathbb{R})$.

We recall that the symbol μ of a multiplier M is in $\mathcal{H}^\infty(\hat{\Omega})$ and it is essentially bounded on the boundary $\delta(\Omega)$ of Ω (see Theorem 2.1).

Proof of Theorem 1.4

Proof. Assume that $\lambda \notin \sigma(M)$. Then $(M - \lambda I)^{-1}$ is a multiplier and for every $a \in [-\ln \rho(S^{-1}), \ln \rho(S)]$, we introduce the symbol $\nu(a) \in L^\infty(\mathbb{R})$ so that

$$F\left(((M - \lambda I)^{-1} f)_a \right)(x) = \nu(a)(x)\hat{f}(x), \forall f \in C_c(\mathbb{R}), \text{ a.e.}$$

Following Lemma 2.3, we can use the above equality for $f = (M - \lambda I)g$ with $g \in C_c(\mathbb{R})$. Indeed, for $g \in C_c(\mathbb{R})$ an application of Theorem 2.1 yields $((M - \lambda I)g)_a \in L^2(\mathbb{R})$ and the assumptions of Lemma 2.3 are fulfilled. We obtain

$$\hat{g}(x) = \nu(a)(x)(\mu(a)(x) - \lambda)\hat{g}(x), \text{ a.e.}$$

Choosing a suitable $g \in C_c(\mathbb{R})$, we get

$$1 = \nu(a)(x)(\mu(a)(x) - \lambda), \text{ a.e.}$$

Given $x \in \mathbb{R}$, satisfying

$$|\mu(a)(x)| \leq ||\mu(a)||_\infty \text{ and } |\nu(a)(x)| \leq ||\nu(a)||_\infty,$$

it is clear that if $\lambda = \mu(a)(x) = \mu(x + ia)$ we obtain a contradiction. For every x for which (3.1) holds and for $a \in [-\ln \rho(S^{-1}), \ln \rho(S)]$ we deduce that

$$\mu(a)(x) = \mu(x + ia) \in \sigma(M).$$

According to Theorem 2.1, ν and μ are holomorphic on $\hat{\Omega}$ and essentially bounded on $\delta(\Omega)$. Consequently, (3.1) holds for almost every x and the proof is complete. □

Notice that ν may not be continuous on the boundary of Ω. Indeed, for $\omega = 1$, let $h \in L^\infty(\mathbb{R})$ be a function which is not continuous on \mathbb{R}. Define the operator H on $L^2(\mathbb{R})$ by the formula

$$Hf = F^{-1}(hf).$$

Then H is a multiplier on $L^2(\mathbb{R})$, but its symbol h is not continuous on $\Omega = \mathbb{R}$.

Now we present one example. Suppose that χ is a complex Borel measure such that

$$\int_{-\infty}^{+\infty} ||S_t||d|\chi|(t) < +\infty. \quad (3.2)$$

Then the operator M_χ defined by the formula

$$M_\chi(f) = \int_{-\infty}^{+\infty} S_t(f)d\chi(t), \forall f \in L^2_\omega(\mathbb{R}),$$
Spectral theorem for multipliers

is obviously a multiplier on $L^2_\omega(\mathbb{R})$. The condition (3.2) implies that

$$\int_{\mathbb{R}} e^{ax} d|\chi|(x) < +\infty, \quad \forall a \in [-\ln \rho(S^{-1}), \ln \rho(S)],$$

so the integral

$$\int_{\mathbb{R}} e^{-iax} d\chi(x)$$

converges for all $\alpha \in \Omega$. Clearly, the symbol of M_χ, defined in Section 2, becomes

$$\hat{\chi}(\alpha) = \int_{\mathbb{R}} e^{-iax} d\chi(x).$$

The results of the previous sections imply

$$\hat{\chi}(\Omega) \subset \sigma(M_\chi). \quad (3.3)$$

The inclusion (3.3) has been established by other methods in [1] and [4]. We see that the inclusion (3.3) may be obtained by the tools of our paper.

4. Spectrum of M_ϕ

In this section we characterize the spectrum of M_ϕ, for $\phi \in C_c(\mathbb{R})$ by using the results of the previous one. We recall that M_ϕ denotes the operator of convolution $\phi \in C_c(\mathbb{R})$. We recall that Ω is the set

$$\Omega = \left\{ z \in \mathbb{C}, -\ln \rho(S^{-1}) \leq \Im z \leq \ln \rho(S) \right\}.$$

First notice that $0 \in \sigma(M_\phi)$. Indeed, suppose that M_ϕ is invertible. Then M_ϕ^{-1} is a multiplier and let μ be its symbol. For $a \in I$, we have

$$\mathcal{F}\left((M_\phi^{-1}(M_\phi f))_a \right) = (\hat{f})_a, \quad \forall f \in C_c(\mathbb{R}).$$

Then, we get

$$\mu_{(a)}(x)(\hat{\phi})_a(x)(\hat{f})_a(x) = (\hat{f})_a(x), \quad \forall f \in C_c(\mathbb{R}), \text{ a.e.}$$

and

$$\mu_{(a)}(x)(\hat{\phi})_a(x) = 1, \quad \text{a.e.}$$

Taking into account that $\mu_{(a)} \in L^\infty(\mathbb{R})$ and $\lim_{x \to +\infty} (\phi)_a(x) = 0$, we obtain a contradiction. Thus, we conclude that $0 \in \sigma(M_\phi)$. Now, we establish the following

Lemma 4.1. Let $\gamma \in \hat{M}$. If there exists $\phi \in C_c(\mathbb{R})$ such that $\gamma(M_\phi) \neq 0$, then there exists $\alpha \in \Omega$ such that

$$\gamma(M_\phi) = \int_{\mathbb{R}} \psi(x)e^{-i\alpha x} dx = \hat{\psi}(\alpha), \quad \forall \psi \in C_c(\mathbb{R}). \quad (4.1)$$
Proof. Let \(\gamma \in \hat{\mathcal{M}} \) and suppose that there exists \(\phi \in C_c(\mathbb{R}) \) such that \(\gamma(M\phi) \neq 0 \). We have

\[
M\phi f = \int_{\mathbb{R}} S_x(f)\phi(x)dx
\]

but we cannot deduce that

\[
\gamma(M\phi) = \int_{\mathbb{R}} \gamma(S_x)\phi(x)dx,
\]

since we do not have the convergence of the Bochner integral \(M\phi f = \int_{\mathbb{R}} S_x(f)\phi(x)dx \) with respect to the operator norm. However, we claim that

\[
\gamma(M\psi) = \int_{\mathbb{R}} \gamma(M\phi \circ S_x)\psi(x)dx, \quad \forall \psi \in C_c(\mathbb{R}). \quad (4.2)
\]

Consider the application

\[
\eta : C_c(\mathbb{R}) \ni \psi \rightarrow \eta(\psi) = \gamma(M\psi)
\]

which is a continuous linear form on \(C_c(\mathbb{R}) \). Here \(C_c(\mathbb{R}) \) is equipped by the topology given by the inductive limit of \(C_K(\mathbb{R}) \), \(K \) being a compact subset of \(\mathbb{R} \). Indeed, if \(K \) is a compact subset of \(\mathbb{R} \) and if \((\psi_n)_{n \in \mathbb{N}} \subset C_K(\mathbb{R}) \) is a sequence uniformly convergent to \(\psi \in C_K(\mathbb{R}) \), for every \(g \in L^2_\omega(\mathbb{R}) \), we have

\[
\|M\psi_n g - M\psi g\| \leq \int_K \|\psi_n - \psi\|_\infty \sup_{y \in K} \|S_y\|\|g\|dx
\]

and so

\[
\lim_{n \to \infty} \|M\psi_n - M\psi\| = 0.
\]

We deduce that the application

\[
C_c(\mathbb{R}) \ni \psi \rightarrow M\psi \in A
\]

is sequentially continuous and so it is continuous from \(C_c(\mathbb{R}) \) to \(A \). It follows that \(\eta \) is a continuous linear form on \(C_c(\mathbb{R}) \) and there exists a measure \(m \) (see [2], Chapter 3) such that

\[
\eta(\psi) = \int_{\mathbb{R}} \psi(x)dm(x), \quad \forall \psi \in C_c(\mathbb{R})
\]

and hence

\[
\gamma(M\psi) = \int_{\mathbb{R}} \psi(x)dm(x).
\]

This implies that for every \(\psi \in C_c(\mathbb{R}) \) we have

\[
\gamma(M\psi \circ M\phi) = \int_{\mathbb{R}} (\psi \ast \phi)(t)dm(t)
\]

\[
= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \psi(x)\phi(t-x)dx \right)dm(t).
\]

Using Fubini theorem, we get

\[
\gamma(M\psi \circ M\phi) = \gamma(M\phi \ast \psi) = \int_{\mathbb{R}} \psi(x) \left(\int_{\mathbb{R}} \phi(t-x)dm(t) \right)dx
\]
= \int_{\mathbb{R}} \psi(x) \gamma(S_x \circ M_\phi) dx

and this yields the claim (4.2). Consequently, we conclude that

\[\gamma(M_\phi) = \int_{\mathbb{R}} \psi(x) \gamma(S_x) dx, \forall \psi \in C_c(\mathbb{R}). \]

(4.3)

Since \(\gamma \in \hat{M} \), it is clear that \(\gamma(S_x) \in \sigma(S_x) \) (see [9]). Set

\[\theta_\gamma(x) = \gamma(S_x) = \frac{\gamma(M_\phi \circ S_x)}{\gamma(M_\phi)}, \forall x \in \mathbb{R}. \]

The application

\[x \mapsto S_x \circ M_\phi = M_{S_x(\phi)} \]

is continuous from \(\mathbb{R} \) into \(A \) and we deduce that \(\theta_\gamma \) is a continuous morphism from \(\mathbb{R} \) to \(\mathbb{C} \). The function \(\theta_\gamma \) verifies

\[\theta_\gamma(x + y) = \theta_\gamma(x) \theta_\gamma(y), \forall x, y \in \mathbb{R}. \]

Therefore there exists \(\alpha \in \mathbb{C} \) such that

\[\theta_\gamma(x) = e^{-i\alpha x}, \forall x \in \mathbb{R}. \]

Applying (4.2) we get

\[\gamma(M_\phi) = \int_{\mathbb{R}} \psi(x) e^{-i\alpha x} dx = \hat{\psi}(\alpha), \forall \psi \in C_c(\mathbb{R}). \]

Since \(e^{-i\alpha} \in \sigma(S) \), an application of Proposition 2.4 yields

\[\frac{1}{\rho(S^{-1})} \leq e^{i\alpha} \leq \rho(S) \]

which implies \(\alpha \in \Omega \). This completes the proof of Lemma 4.1. \(\square \)

Corollary 4.2. Let \(\phi \in C_c(\mathbb{R}) \). If \(\lambda \in \sigma(M_\phi) \setminus \{0\} \) then there exists \(\alpha \in \Omega \) such that \(\lambda = \hat{\phi}(\alpha) \) and

\[\sigma(M_\phi) \setminus \{0\} \subset \hat{\phi}(\Omega). \]

Proof. Following [9], we have \(\sigma(M_\phi) = \{ \gamma(M_\phi), \gamma \in \hat{M} \} \). Let \(\gamma \in \hat{M} \) be fixed such that \(\lambda = \gamma(M_\phi) \). The Corollary 4.2 follows from the previous lemma. \(\square \)

5. Spectrum of \(M \in \mathcal{A} \)

Now we examine the spectrum of multipliers forming a larger class than those of operators \(M_\phi \). We will show that if \(M \in \mathcal{A} \) and \(\nu \) is the symbol of \(M \), then \(\nu \) is a continuous function on \(\Omega \) and we have

\[\sigma(M) = \overline{\nu(\Omega)}. \]

Proof of Theorem 1.3.
Proof. First, we show that \(\nu \) is continuous on \(\Omega \). Let \((\phi_n)_{n \in \mathbb{N}} \) be a sequence of \(C_c(\mathbb{R}) \) such that \((M_{\phi_n})_{n \in \mathbb{N}} \) converges to \(M \) with respect to the operator topology. The construction of \(\nu_{(a)} \) for \(a \in [-\ln \rho(S^{-1}), \ln \rho(S)] \), defined in [6] (see also the proof of Lemma 2.3 in Section 2), defines \(\nu_{(a)} \) as the limit of \((\psi_n)_{a} \) with respect to the weak topology of \(L^2(\mathbb{R}) \), where \((\psi_n)_{a} \) is a special sequence in \(C_c(\mathbb{R}) \) such that \((M_{\psi_n})_{n \in \mathbb{N}} \) converges to \(M \) with respect to the strong operator topology. Using the same argument as in [6], we get

\[
\nu_{(a)}(x) = \lim_{n \to \infty} (\phi_n)_{a}(x)
\]

with respect to the weak topology of \(L^2(\mathbb{R}) \). For fixed \(a \in [-\ln \rho(S^{-1}), \ln \rho(S)] \) and \(x \in \mathbb{R} \), we have

\[
| (\phi_n)_{a}(x) - (\phi_k)_{a}(x) | \leq \| M_{\phi_n} - M_{\phi_k} \| \tag{5.1}
\]

(see (2.1)). Since \((M_{\phi_n})_{n \in \mathbb{N}} \) converges to \(M \) in \(\mathcal{A} \), we conclude that \((\phi_n)_{a} \) converges uniformly on \(\mathbb{R} \) to a continuous function \(\mu_{(a)} \) and that there exists a constant \(C \) such that

\[
| (\phi_n)_{a}(x) | \leq C, \forall a \in [-\ln \rho(S^{-1}), \ln \rho(S)], \forall x \in \mathbb{R}, \forall n \in \mathbb{N}.
\]

Moreover, we have \(\lim_{x \to +\infty} \mu_{(a)}(x) = 0 \). We obtain that \((\phi_n)_{a} \) converges to \(\mu_{(a)} \) with respect to the weak topology of \(L^2(\mathbb{R}) \). Thus we can identify the symbol of \(M \) with the function \(\mu \) defined by

\[
\mu(x + ia) = \mu_{(a)}(x), \forall a \in [-\ln \rho(S^{-1}), \ln \rho(S)], \forall x \in \mathbb{R}.
\]

Taking into account (5.1), it is clear that \(\mu \) is continuous on \(\Omega \).

Given \(\lambda \in \sigma(M) \setminus \{0\} \), there exists \(\gamma \in \mathcal{M} \) such that \(\lambda = \gamma(M) \). Then we have

\[
\lambda = \lim_{n \to \infty} \gamma(M_{\phi_n}) = \gamma(M_{\phi_n}) = \mu(\alpha).
\]

Notice that \(\alpha \) is independent of \(n \). Consequently, we have

\[
\lambda = \lim_{n \to \infty} \gamma(M_{\phi_n}) = \lim_{n \to \infty} \gamma(\phi_n) = \mu(\alpha).
\]

Since \(\mu \) is equal to the symbol \(\nu \) of \(M \), we conclude that

\[
\sigma(M) \setminus \{0\} \subset \nu(\Omega).
\]

Taking into account the result of the previous section, the proof is complete. \(\square \)

6. Spectrum of multipliers on \(L^2(\mathbb{R}^k) \)

Theorems 1.2-1.4 can be generalized for multipliers on \(L^2(\mathbb{R}^k) \), \(k > 1 \), where \(\omega \) is a weight on \(\mathbb{R}^k \) satisfying the following condition

\[
\omega = \omega_1 \times \ldots \times \omega_k,
\]
where $\omega_1, ..., \omega_k$ are weights on \mathbb{R}. From now on, ω denotes a weight on \mathbb{R}^k having the above form.

Given $\phi \in C_c(\mathbb{R}^k)$, the Fourier transform $\widehat{\phi}$ is defined on \mathbb{C}^k. Set

$$e_m = (e_{m,1}, ..., e_{m,k}),$$

where $e_{m,i} = 0$, if $m \neq i$ and $e_{m,m} = 1$. For $m = 1, ..., k$, let S_m be the translation by e_m defined on $L_2^\omega(\mathbb{R}^k)$. Introduce

$$U = \{z = (z_1, ..., z_k) \in \mathbb{C}^k ; \exists z_i \in [-\ln \rho(S_i^{-1}), \ln \rho(S_i)], \text{ for } i = 1, ..., k\}.$$

We have (see [7] and [8]) the following representation theorem for multipliers on $L_2^\omega(\mathbb{R}^k)$.

Theorem 6.1. Let M be a multiplier on $L_2^\omega(\mathbb{R}^k)$. Then there exists $\nu \in L^\infty(U)$ such that

$$\int_{\mathbb{R}^k} (Mf)(x)e^{-ix \cdot z} dx = \nu(z) \int_{\mathbb{R}^k} f(x)e^{-ix \cdot z} dx, \forall f \in C^\infty(\mathbb{R}^k),$$

for all $z \in U$ and for almost every $z \in \delta(U)$.

Given a multiplier M on $L_2^\omega(\mathbb{R}^k)$, we call symbol of M the function ν introduced in the previous theorem. Moreover, in [8] the following result was established.

Proposition 6.2. We have $z = (z_1, ..., z_k) \in U$ if and only if

$$e^{-iz_m} \in \sigma(S_m), \text{ for } m = 1, ..., k.$$

The set U is related to the joint spectrum of $S_1, ..., S_k$. Let A be a commutative Banach algebra with unit I. We recall the following

Definition 6.3. The joint spectrum $\sigma_s(A_1, ..., A_k)$ of the operators $A_1, ..., A_k \in A$ is the set

$$\{(\alpha_1, ..., \alpha_k) \in \mathbb{C}^k ; \sum_{m=1}^k (A_m - \alpha_m I)J_m \text{ is not invertible in } A, \forall (J_1, ..., J_k) \in \mathbb{A}^k\}.$$

In general $\sigma_s(A_1, ..., A_k) \neq \sigma(A_1) \times \cdots \times \sigma(A_k)$ and the determination of $\sigma_s(A_1, ..., A_k)$ is a quite difficult problem. However, in the spaces $L_2^\omega(\mathbb{R}^k)$, we have the equality

$$\sigma_s(S_1, ..., S_k) = \sigma(S_1) \times \cdots \times \sigma(S_k)$$

(see ([8])). Using Theorem 6.1, Proposition 6.2 and the arguments in Section 4, we obtain the following

Theorem 6.4. For $\phi \in C_c(\mathbb{R}^k)$, we have

$$\sigma(M\phi) = \overline{\phi(U)}.$$

Moreover, repeating the arguments in Sections 2-5, we obtain
Theorem 6.5. Let $M \in \mathcal{A}$ and let ν be the symbol of M. Then ν is a continuous function on \mathcal{U} and we have

$$\sigma(M) = \overline{\nu(\mathcal{U})}.$$

Let $M \in \mathcal{M}$ and let ν be its symbol. Then

$$\nu(\mathcal{U}) \subset \sigma(M).$$

References

Acknowledgment

The author thanks the referee for his critical remarks and observations leading to an improved version of the paper.

Violeta Petkova
LMAM
Université de Metz UMR 7122
Ile du Saulcy
57045 Metz Cedex 1, France.
e-mail: petkova@univ-metz.fr