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Part I

Setting up the Problem



What do we want?

We want to control the unitary time evolution of a (small)
quantum system interacting with photons, here a massless scalar
quantum field.

In particular, we want to understand precisely how the coupling to
the field induces transitions in the small system.

At the Van Hove timescale, t ∼ g−2, this problem has been well
understood since the work of Davies (mid 70’ties).

But what lies beyond the Van Hove timescale?
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The Small Quantum System

The Hilbert space for the small system is K = CL.

The Hamiltonian is the self-adjoint diagonal matrix

Hat = diag{e(1), e(2), . . . , e(L)}

with its real eigenvalues placed in increasing order

e(1) < e(2) < · · · < e(L).

We may, and will, assume that

Σ := min
{
e(`+1) − e(`)

∣∣ 1 ≤ ` ≤ L− 1
}
≥ 1.

Our method does not at present allow us to deal with degenerate
energy levels.
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The Scalar Field

The Hilbert space for the free scalar photon field is the Bosonic
Fock space

F = Γ(L2(R3)) = C⊕
( ∞⊕
n=1

L2(R3)⊗sn
)
.

We write |0〉 = (1, 0, 0, . . . ) for the vacuum vector.

The free field energy, at zero temperature is the second quantized
massless dispersion relation k → |k |, i.e.,

Hph = dΓ(|k |) =

∫
R3

|k |a∗(k)a(k)dk .

The choice of dimension equal to 3 is not of any significance.
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The Free Hamiltonian

We tensor the small particle system with the field and get the total
Hilbert space

H = K ⊗ F .

The free Hamiltonian is

H0 = Hat ⊗ 1F +1K⊗Hph.

We have

σ(H0) = [e(1),∞) and σpp(H0) = σ(Hat).

The point spectrum is embedded into the continuous spectrum.
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The Interaction

The coupling between atom and field is induced by a coupling
function

G ∈ L2(R3;ML(C)),

For real θ, we dilate the interaction

Gθ(k) = e−3θ/2G (e−θk)

and assume that the dilated interaction extends analytically to the
rectangle

R =
{
z ∈ C

∣∣ |Rez | < ln(4/3), |Imz | < Θ}

for some Θ > 0. The choice of ln(4/3) as the constraint of the
real part of θ is for convenience.
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Decay Assumptions

To be precise, we formulate (and forget) the decay assumptions on
G that we make use of.

We assume the existence of C > 0 and µ > 0 such that

∀|k| ≤ 1, θ ∈ R : |Gθ(k)| ≤ C |k |−
1
2

+µ

and

sup
θ∈R

∫
|k|≥1

|Gθ(k)|2dk <∞.

It is an observation of Hasler and Herbst that µ may be chosen
equal to zero if L = 2 and G (k) does not have diagonal entries for
any k . (As in the spin-boson model.)
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The interacting Hamiltonian

The coupling G gives rise to an interaction term

φ(G ) =

∫
R3

(
G (k)∗ ⊗ a(k) + G (k)⊗ a∗(k)

)
dk .

The interacting (Pauli-Fierz) Hamiltonian

Hg = H0 + gφ(G ),

can now be constructed using the Kato-Rellich theorem. Hence

D(Hg ) = D(H0) = D(1K⊗Hph).

Here g is a (real) coupling constant.
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First Attempt

Our initial intention was to find an expression for

Pe−itHgP

analogous to the Feshbach operator. Here P is an orthogonal
projection, for example onto the vacuum sector K ⊗ C.

While we did succeed in this task, we were not able to set up an
iteration scheme, as in the BFS renormalization group. (To many
oscillatory integrals.)
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Second Attempt

The starting point is an old idea, to express e−itHg as an inverse
Laplace transform of the resolvent:

e−itHg = s– lim
T→+∞

1

2πi

∫
[−T ,T ]+ic

e−itz(Hg − z)−1 dz ,

where c > 0.

To illustrate why a vacuum projection may help, consider the free
case g = 0. Here 〈0|(H0 − z)−1|0〉 = (Hat − z)−1, which is an
analytic function of z with simple poles at the eigenvalues e(`).
` = 1, 2, . . . , L.

It is now an easy consequence of the residue theorem, to show that
the inverse Laplace transform of 〈0|(H0 − z)−1|0〉 is indeed e−itHat .

A A R H U S U N I V E R S I T Y

Department of Mathematics Jacob Schach Møller



Second Attempt

The starting point is an old idea, to express e−itHg as an inverse
Laplace transform of the resolvent:

e−itHg = s– lim
T→+∞

1

2πi

∫
[−T ,T ]+ic

e−itz(Hg − z)−1 dz ,

where c > 0.

To illustrate why a vacuum projection may help, consider the free
case g = 0. Here 〈0|(H0 − z)−1|0〉 = (Hat − z)−1, which is an
analytic function of z with simple poles at the eigenvalues e(`).
` = 1, 2, . . . , L.

It is now an easy consequence of the residue theorem, to show that
the inverse Laplace transform of 〈0|(H0 − z)−1|0〉 is indeed e−itHat .

A A R H U S U N I V E R S I T Y

Department of Mathematics Jacob Schach Møller



Second Attempt

The starting point is an old idea, to express e−itHg as an inverse
Laplace transform of the resolvent:

e−itHg = s– lim
T→+∞

1

2πi

∫
[−T ,T ]+ic

e−itz(Hg − z)−1 dz ,

where c > 0.

To illustrate why a vacuum projection may help, consider the free
case g = 0. Here 〈0|(H0 − z)−1|0〉 = (Hat − z)−1, which is an
analytic function of z with simple poles at the eigenvalues e(`).
` = 1, 2, . . . , L.

It is now an easy consequence of the residue theorem, to show that
the inverse Laplace transform of 〈0|(H0 − z)−1|0〉 is indeed e−itHat .

A A R H U S U N I V E R S I T Y

Department of Mathematics Jacob Schach Møller



The Complex Dilated Hamiltonian

Let uθ denote the operator of dilation on L2(R3):

(uθf )(k) = e3θ/2f (eθk).

We lift uθ to a transformation Uθ = Γ(uθ) on Fock space. When θ
is real, both operators are unitary.

The dilated Hamiltonian, computed first for real θ, becomes

Hg (θ) := U∗θHgUθ = Hat + e−θHph + gV (θ),

where

V (θ) =

∫
R3

(
Gθ̄(k)∗ ⊗ a(k) + Gθ(k)⊗ a∗(k)

)
dk .

Note that Hg (θ) is closed on D(Hph) and not normal if Imθ 6= 0.
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The Benefit of Complex Dilation

The term e−θHph generates the continuous spectrum with a
branch starting at each bare energy level e(`).

Having Imθ > 0 bends the branches of continuous spectrum down
into the lower half-plane, such that they do not collide with other
eigenvalues and stay clear of the integration contour R + ic .

However, the branches are still there, so we will not simply be able
to use the residue theorem to analyze the inverse Laplace
transform.

Note that Uθ|0〉 = |0〉, such that we have the crucial identity

〈0|(Hg − z)−1|0〉 = 〈0|(Hg (θ)− z)−1|0〉.
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What we need to proceed

In order to get the best possible expression for the projected
dynamics, we need to pull the integration contour down as close as
possible to the spectrum.

The tip of each of the L branches of continuous spectrum will start
at a resonance, the precise position of which we need to determine.

Additionally, we need to get good estimates on (Hg (θ)− z)−1,
which are not immediate since Hg (θ) is not a normal operator.
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Part II

The Renormalization Group



Parameters

g ∈ G ⊂ C: An auxiliary complex parameter (the coupling
constant). Here G is open.

θ ∈ RΘ = {θ ∈ C | |Reθ| < ln(4/3), Θ/2 < Imθ < Θ}: The
complex dilation parameter.

z ∈ D1/2 = {z ∈ C | |z | ≤ 1/2}: A complex spectral
parameter.

0 ≤ r ≤ 1: permitted values of Hph.

0 < ρ ≤ ρ ≤ ρ̄: a real scaling parameter.

0 < ξ < 1: A measure of the rate of decay of Wick
monomials.
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Kernels of Wick Monomials

A kernel of a Wick monomial of order (M,N) with M,N ≥ 0 is a
C-valued function

(r , k(M,N), z , θ, ρ, g)→ wM,N(r , k(M,N), z ; θ, ρ, g),

where k(M,N) = (k(M), k̃(N)) ∈ B3M
1 × B3N

1 are momenta and
B1 = {k ∈ R3 | |k | ≤ 1}.

For almost every k(M,N), the function

(r , z , θ, ρ, g)→ wM,N(r , k(M,N), z ; θ, ρ, g)

is jointly continuous, admits a continuous partial r -derivative, and
is holomorphic in the variables z , θ and g .
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Norms of Wick Kernels

For M + N ≥ 1, we introduce the norm

‖wM,N‖2
µ = sup

z,θ,ρ,g

∫
BM+N

1

sup
0≤r≤1

∣∣wM,N(r , k(M,N), z)
∣∣2 dk(M,N)∏

(k(M,N))3+2µ
,

where
∏

(k(M,N)) = |k1| · · · |kM | |k̃1| · · · |k̃N |.

For M = N = 0, we simply use

‖w0,0‖µ = sup
r ,z,θ,ρ,g

|w0,0(r , z ; θ, ρ, g)|,

We consider only kernels for which

‖wM,N‖µ <∞ and ‖∂rwM,N‖µ <∞.
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Wick Monomials

To a kernel wM,N , M + N ≥ 1, we associate the Wick monomial

WM,N [z ] =

∫
BM+N

1

a∗(k(M))wM,N(Hph, k
(M,N), z)a(k̃(N))

dk(M,N)√∏
(k(M,N))

,

where a(k̃(N)) = a(k̃N) · · · a(k̃1) and a∗(k(M)) = a∗(k1) · · · a∗(kM).

The Wick monomials should be understood as bounded operators
on

Hred = 1[Hph ≤ 1]F .

We in fact have

‖WM,N [z ]‖Op ≤ M−M/2N−N/2‖wM,N‖µ ≤ ‖wM,N‖µ.
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Wick Polynomials

Write W≥1 for sequences of kernels w = {wM,N}M+N≥1 with finite
norm

‖w‖ξ,µ =
∑

M+N≥1

ξ−M−N
(
‖wM,N‖µ + ‖∂rwM,N‖µ

)
.

To w ∈W≥1, we associate a Wick Polynomial

W [z ] =
∑

M+N≥1

WM,N [z ].

Wick polynomials are bounded operators on Hred with

‖W [z ]‖Op ≤ ξ‖w‖ξ,µ.
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Free Hamiltonian and Spectral Parameter

We decompose ‘kernels’ of order (0, 0) into a sum of two terms

w0,0(r , z) = T [r , z ]− E [z ],

where E [z ] = −w0,0(0, z).

The operator T [Hf , z ] plays the role of a (complex dilated) field
energy, and E [z ] plays the role of a spectral parameter.

We write W≥0 for sequences of kernels h = {wM,N}M+N≥0 with
finite ‖ · ‖ξ,µ-norm (extended in the obvious way).

To h ∈W≥0, we may now associate a bounded operator

H[z ] = T [Hf , z ]− E [z ] + W [z ].
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Disc of Kernels

The renormalization transformation will act on a subset of W≥0,
indexed by two positive numbers ε and δ.

Write D(ε, δ) ⊂W≥0 for the sequences h = (w0,0,w) with
w ∈W≥1 for which

|E [z ]− z | ≤ δ, ‖w‖ξ,µ ≤ δ, |∂rT [r , z ]− e−θ| ≤ ε.

Hamiltonians H[z ] associated to h ∈ D(ε, δ) are close to the free
dilated field energy e−θHph − z , provided ε and δ are small.
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Zeroes

Let h ∈ D(1/32, 1/32).

It is a consequence of Rouché’s Theorem that z → w0,0[r , z ; θ, ρ, g ]
has a unique simple zero in D1/2, provided 0 ≤ r ≤ 1/8.

This zero is denoted by z [r ] = z [r ; θ, ρ, g ] and is holomorphic as a
function of θ and g . We have

E [z [0]] = 0.

Furthermore

|z [0]| ≤ δ and |z [r ]− z [0]− e−θr | ≤ 1

2
(7δ + 32ε)r .
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Resolvent Estimate

Knowing the zeroes of w0,0, we know for which z ’s the operator
T [Hph, z ]− E [z ] is singular.

By a Neumann series expansion, we can place the z ’s for which
H[z ] is not invertible in a rounded cone:

For κ ∈ [0, 1), let Cκ = (1 + Dκ)[0,∞).

Then for z ∈ D1/2 \ (D3δ + e−θC4ε/3), the operator H[z ] is
invertible and

‖H[z ]−1‖ ≤ 1

dist(z , e−θC4ε/3)− 2δ
≤ 1

δ
.
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Restricted Resolvent Estimate

The singular behavior of T [Hf , z ]− E [z ], for z near z [0], is driven
by the low momenta part of Hph.

Restricting to a subspace of the form 1[Hph ≥ b]Hred cuts out the
singular part of the Hamiltonian.

Let χ, χ̄ ∈ C∞(R), χ, χ̄ ≥ 0, χ2 + χ̄2 = 1, supp(χ) ⊂ (−∞, 1]
and supp(χ̄) ⊂ [3/4,∞). Abbreviate χρ(λ) = χ(λ/ρ) and
χ̄ρ(λ) = χ̄(λ/ρ). Writing χρ = χρ(Hph) and χ̄ρ = χ̄ρ(Hph), we
define, as an operator on 1[Hph ≥ 3ρ/4]Hred,

Hχ̄ρ [z ] = T [Hph, z ]− E [z ] + χ̄ρW [z ]χ̄ρ.

Suppose δ < ρ/60 and z ∈ z [0] + D ρ̃/2, where ρ̃ = ρ/|E ′[z [0]]|.
Then Hχ̄ρ [z ] is invertible and (using |E ′[z [0]]− 1| ≤ 8δ)

‖Hχ̄ρ [z ]−1‖ ≤ 1
ρ

20 − 3δ
.
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Restricting to a subspace of the form 1[Hph ≥ b]Hred cuts out the
singular part of the Hamiltonian.
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Schur Operator

Having set up and analyzed the class of Hamiltonians we wish to
study, we are ready to zoom in around z [0].

The key is an old result of Schur (from Linear Algebra). Let

H =

(
H0 B

C H

)
be a block decomposition of a linear operator H with H invertible.

Then H is invertible if and only if the Schur Operator

F = H0 − BH
−1

C

is invertible, and if invertibility holds, we have

H−1 =

(
F−1 −F−1BH

−1

−H−1
CF−1 H

−1
+ H

−1
CF−1BH

−1

)
.
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Renormalization. First Step

Using a Hilbert space analogue of Schur’s result and with
smoothed out projections, we get the Feshbach operator

Fρ[z ] = T [Hph, z ]− E [z ]− χρW [z ]χ̄ρHχ̄ρ [z ]−1χ̄ρW [z ]χρ.

Then H[z ] is invertible if and only if Fρ[z ] is invertible as an
operator on 1[Hph ≤ ρ]Hred.
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Renormalization. Second Step

The Feshbach operator acts in 1[Hph ≤ ρ]Hred.

In order to return to the original setting, we do a momentum
rescaling, employing the unitary dilation operator Γρ = Uln ρ:

Γρ 1[Hph ≤ ρ]Hred = Hred and Γρχρ = χΓρ.

The rescaled Feshbach operator, acting on Hred, becomes

1

ρ
ΓρFρ[z ]Γ∗ρ,

where the factor 1/ρ is an energy rescaling chosen such that

1

ρ
ΓρHphΓ∗ρ = Hph.
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Renormalization. Third Step

The next step is to rescale the spectral parameter z from
z [0] + D ρ̃/2 back to D1/2.

This is achieved by the affine linear map

J(z) =
E ′[z [0]]

ρ
(z − z [0]).

Composing the three constructions yields the one-step
renormalized Hamiltonian

Rρ(h)[ζ] =
1

ρ
ΓρFρ[J−1(ζ)]Γ∗ρ.
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Renormalization. Fourth and Last Step

Recall that we started with a h ∈ D(δ, ε) and from that we
constructed a renormalized Hamiltonian Rρ(h)[ζ], which is a
bounded operator on Hred for each ζ ∈ D1/2.

In order to identify an element Rρ(h) ∈W≥0 giving rise to the
operators Rρ(h)[ζ], we must expand H−1

χ̄ρ as a Wick polynomial,
and read of and analyze the kernels.

Finally, one should identify suitable δ′, ε′ such that one can place
Rρ(h) ∈ D(δ′, ε′).

This is the hard part of the analysis ... so we skip it.
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Contractivity of the RG Transformation

There exist (explicit) constants 0 < c1, c2, c3 < 1, depending only
on the choice of χ, such that with:

0 < ρ < ρ̄ = c
1/µ
1 , ξ = c2

√
ρ,

0 < ε ≤ 1

32
, 0 < δ ≤ c3ρ.

we have
Rρ(h) ∈ D(δ/2, ε+ δ/2).

In the rest of Part II we fix

δ0 ≤ c3ρ and ε0 ≤ 1/32− δ0.
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Iterating the Renormalization Transform

Suppose we begin with h(0) ∈ D(δ0, ε0). We may now iterate and
get a sequence

h(n) ∈ D(2−nδ0, ε0 + δ0).

To each h(n) we have an associated Hamiltonian

H(n)[z ] = T(n)[Hph, z ]− E(n)[z ] + W(n)[z ].

We also have zeroes z(n)[r ] with E(n)[z(n)[0]] = 0 and scaling
factors

ρ̃(n) =
ρ

|E ′(n)[z(n)[0]]|

We have
1

2
ρn ≤ ρ̃(0)ρ̃(1) · · · ρ̃(n−1) ≤

3

2
ρn.
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Resonance

At each step of the procedure, we pick up ever finer corrections
z(n)[0] to a resonance position.

Going back with the successive affine linear spectral
transformations

J−1
(n)(ζ) = z(n)[0] + ρ̃nζ,

We arrive a candidate for a resonance

e(∞) = z(0)[0] +
∞∑
j=1

ρ̃(0) · · · ρ̃(j−1)z(j)[0].

Note that e(∞) depends holomorphically on θ and g through both
the z(n)[0]’s and the ρ̃(n)’s.
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Spectral Localization

From the point of view of the original disc D1/2, pertaining to h(0),
the rescaled discs are concentric and intersects to {e(∞)}:

e(n) + D 1
2
ρ̃(0)···ρ̃(n−1)

.

Here the e(n)’s are approximate resonance positions

e(n) = z(0)[0] +
n∑

j=1

ρ̃(0) · · · ρ̃(j−1)z(j)[0].

Using isospectrality in the n’th annulus with H(n)[z ] yields:{
z ∈ D1/2

∣∣H(0)[z ] invertible
}
⊂ e(∞) + e−θCκ,

where κ = 3ε0 + 46δ0/ρ.
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Improved Resolvent Estimate

As with Schur’s theorem from Linear Algebra, one may reconstruct
H[z ]−1 from H(n)[ζ]−1, provided z ∈ e(n) + D 1

2
ρ̃(0)···ρ̃(n−1)

and not in

the cone e(∞) + e−θCκ from the previous slide.

We find that for any z ∈ D1/2 \ (e(∞) + e−θCκ), we have

‖H[z ]−1‖Op ≤
100

dist(z , e(∞) + e−θCκ)
.
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Part III

Effective Dynamics



Initial Discs and Projections

Place discs around each unperturbed energy level with a radius

ρ(−1) =
Θ

π
≤ 1

2
,

such that for ` = 2, 3, . . . , L:

(e(`−1) + e−θ[0,∞)) ∩ (e(`) + Dρ(−1)/2) = ∅.

We want to initialize the Renormalization Scheme using the
projections

P(`) = P
(`)
at ⊗ χρ0 ,

where P
(`)
at projects onto the `’th atomic eigenspace.
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Restriction on Coupling Strength

In order to do that, we need

H
P

(`) [z ] = Hat + e−θHph − z + gP
(`)
V (θ)P

(`)

to be invertible for |z − e(`)| ≤ ρ(−1)/2 as an operator on

P
(`)
at H⊕ 1[Hph ≥ 3ρ(−1)/4]H.

This is ok provided

|g | < g0 =
Θ3/2

82π3/2 supθ∈R

√∫
R3(1 + |k |−1)|Gθ(k)|2dk

.
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Feeding the Renormalization Scheme

For each ` we now feed the Hamiltonian

H(0)[z ] =
1

ρ(−1)
Γρ(−1)

FP(`) [e(`) + ρ(−1)z ]Γ∗ρ(−1)
,

or rather the sequence of kernels h
(`)
(0) = {w (`)

(0),M,N}M+N≥0 giving
rise to the above Hamiltonian, to the machinery.

Writing w
(`)
(0),0,0 = T

(`)
(0) [r , z ]− E

(`)
(0) [z ], one may verify that

sup
0≤r≤1

|∂rT (`)
(0) [r , z ]− e−θ| ≤ C |g |2, |E (`)

(0) [z ]− z | ≤ C |g |2,

‖{w(0),M,N}M+N≥1‖ξ,µ ≤ C |g |,

for some C > 0, independent of z ∈ D1/2, θ ∈ RΘ and |g | < g0.
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Resonances and Spectral Localization

Write e
(`)
(∞) for the resonances coming from h

(`)
(0), ` = 1, 2, . . . , L.

Then the original dilated Hamiltonian Hg (θ) has resonances (in
fact eigenvalues) at

E (`) = e(`) + ρ(−1)e
(`)
(∞).

The E (`) = E (`)[g ]’s do not depend on θ nor on ρ, and are
holomorphic in g .

We furthermore find that

σ(Hg (θ)) ⊂ Sθ,

where

Sθ =
L⋃
`=1

(E (`) + e−θCκ).
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Final Resolvent Estimate

Employing the resolvent estimate for H
(`)
(0)[z ]−1, together with

Neumann expansions when |z − e(`)| > ρ(−1), we find that for any
z ∈ C \ Sθ:

‖(Hg (θ)− z)−1‖ ≤ C

dist(z ,Sθ)
,

for some C > 0.
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The Integration Contour

Recall the formula for the dilated group (now semigroup)

e−itHg (θ) = s– lim
T→+∞

1

2πi

∫
[−T ,T ]+ic

e−itz(Hg (θ)− z)−1 dz .

Let

f (r) = max{ImE (`) − sin(Θ/4)|ReE (`) − r | : |` = 1, 2, · · · , L}

and define a curve
γ(∞)(r) = r + if (r).

Ideally we would like to deform the integration contour to run
along the curve. Note that Sθ sits below the curve (except for the
resonances), provided δ0 << ρ, i.e., for small enough g0.
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Decapitated Key Hole Path

The path just chosen hits the resonances and will give rise to
logarithmically divergent integrals. To avoid that, for a given
n ∈ N0, we replace the part of the curve inside
E (`) + Dρ(−1)ρ̃(0)···ρ̃(n−1)/2, with a another curve running along the
boundary up just above the resonance, cutting across at a distance
of O(ρn+1) and back down again. We call these curves, shaped
like a series of decapitated keyholes, γ(n).

The modified segments, we call γ
(`)
(n). Then

∣∣∣e−itHg (θ) − 1

2πi

L∑
`=1

∫
γ

(`)
(n)

e−itz(Hg (θ)− z)−1 dz
∣∣∣

≤ Cet max ImE (`) | ln(ρn)|e− sin(Θ/4)ρnt/5.
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Passing to Renormalized Free Dynamics

We now use the Feshbach-Schur reconstruction to replace

(Hg (θ)− z)−1 with H
(`)
(n)[ζ]−1 (up to reconstruction corrections),

where z and ζ related though multiple affine linear rescalings.

Write σ for image of the decapitated keyhole path in D1/2. Then∣∣∣∫
γ

(`)
(n)

e−itz(Hg (θ)− z)−1 dz

−
∫
σ
A

(`)
(n)e

−it(e(`)+ρ(−1)e
(`)
(n)

+ρ(−1)ρ̃(0)···ρ̃(n−1)ζ)

× χρ(−1)ρ
nΓρ(−1)ρn

H
(`)
(n)[ζ]−1Γ∗ρ(−1)ρn

χρ(−1)ρ
n dζ

∣∣∣
≤ CetImE (`)(| ln(ρ)|e− sin(Θ/4)ρn/5 +

ξδ0

ρ
etρ

n+1)
,

where A
(`)
(n) = |E ′(0)[z(0)[0]] · · ·E ′(n−1)[z(n−1)[0]]| (for each `).
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Renormalized Free Hamiltonian

The next step is to replace H
(`)
(n)[ζ] by its free counterpart

T
(`)
(n)[Hph, ζ]− E

(`)
(n)[ζ].

The error in doing so is:∣∣∣∫
σ
A

(`)
(n)e

−it(e(`)+ρ(−1)e
(`)
(n)

+ρ(−1)ρ̃(0)···ρ̃(n−1)ζ)
χρ(−1)ρ

nΓρ(−1)ρn

×
(
H

(`)
(n)[ζ]−1 − (T

(`)
(n)[Hph, ζ]− E

(`)
(n)[ζ])−1

)
Γ∗ρ(−1)ρn

χρ(−1)ρ
n dζ

∣∣∣
≤ CetImE (`) ξδ0

ρ
ectρ

n+1
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Coup de Grace

Now that we are down to a function of Hph, we may sandwich with
a vacuum projection to arrive at (T [0, ζ]− E [ζ])−1, which has a
simply pole at the (rather an) approximate resonance position:

1

2πi

∫
σ
A

(`)
(n)e

−it(e(`)+ρ(−1)e
(`)
(n)

+ρ(−1)ρ̃(0)···ρ̃(n−1)ζ)

× (T
(`)
(n)[0, ζ]− E

(`)
(n)[ζ])−1 dζ

= A
(`)
(n)e

−it(e(`)+ρ(−1)e
(`)
(n)

+ρ(−1)ρ̃(0)···ρ̃(n−1)z(n)[0])

= A
(`)
(n)e

−itE (`)
(n) .

where E
(`)
(n) = e(`) + ρ(−1)e

(`)
(n+1) and

|E (`) − E
(`)
(n)| ≤ Cρn+1 δ0

ρ
and |A(`)

(n) − 1| ≤ 16δ0.
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Summing Up

Finally we have, for any n,∥∥∥〈0|e−itHg |0〉 − diag(A
(1)
(n)e

−itE (1)
(n) , . . . ,A

(L)
(n)e

−itE (L)
(n) )
∥∥∥

≤ Cet max ImE (`)(| ln(ρn)|e−ctρn +
ξδ0

ρ
ectρ

n+1)
.

One my exploit this estimate, together with analyticity of the
E (`)’s as functions of g , to argue that

ImE (`) ≤ 0,

for all |g | ≤ g1, for a g1 > 0 sufficiently small.
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Time Scales

Each non-real E (`) defines a timescale through its imaginary part

ImE (`) = a2k`g
2k` + O(g2(k`+1)),

where a2k` < 0.

One may now do Van Hove type limits at time scales t ∼ g−2k` to
extract weak coupling limits at the time scales of the system.

Levels with longer time scales give oscillatory contributions that
should be factored out, whereas levels with shorter time scales die
out.
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